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Temperature  Diffuse Scattering for Cubic Powder Patterns 
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General expressions for the various orders of temperature diffuse scattering (TDS) for cubic 
elements are developed which show that the diffuse peaks at the Bragg maxima are broader for the 
higher order TDS contributions, and which also show that the average value of/ th order TDS (in 
electron units per atom) isf  2 exp [ -  2M](2M)~/l !. The relevance of this result to the Warren theory 
and the more recent Paskin theory for TDS for cubic powders is discussed, and it is shown that the 
Warren theory is more accurate. 

Introduction 

Since the appearance of Warren's theory (1953) for 
temperature diffuse scattering (TDS) for cubic powder 
patterns, there has been interest in its experimental 
application, and there have been efforts to refine it 
theoretically. I t  was used to determine independently 
the atomic scattering factor f and the Debye-Waller 
factor 2M of copper (Borie, 1956), and Herbstein & 
Averbach (1955) modified the original theory to obtain 
a form valid for temperatures significantly lower than 
the Debye temperature O. More recently, Paskin 
(1958, 1959) proposed a refinement of the Warren 
theory, and Chipman & Paskin (1959) used it to 
interpret the powder patterns of copper and lead. 
I t  is the purpose of this paper to show that  there are 
inaccuracies in the Paskin theory, and that  the original 
Warren formulation remains a useful expression for 
cubic powder patterns. 

In general the TDS in electron units may be written 

c o  

ITD = ~ ITD~ (1) 
/ = 1  

with ITDI is the lth order TDS, or that  part of the 
diffuse scattering associated with l-phonon processes. 
At small values of sin 0/~t the dominant term is ITD1, 
but at greater distances from the origin in reciprocal 
space, the higher order terms of equation (1) make 
increasingly important contributions. Paskin's result 
is that  for a cubic powder pattern, fTDl may be 
written 

ITD~ = N f  2 exp [ -  2M] ( (2MD)~/1 !)Ct. 

The Debye model of a lattice is used, and it is assumed 
that  only one- and two-phonon processes make sig- 
nificant contributions to equation (1) so that  it may 
be written 

ITD= Nf2 exp [ -  2M](2MD)(C~ + MDC2). 

The quantity 2MD is similar but not identical to 2M 
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in the Paskin theory, and C1 and C2 are functions of 
sin 0/A and the cell size. Chipman & Paskin (1959) 
assert that  C1 has an average value of approximately 
one, and C9 of approximately five. 

I t  will be shown here that  with the Debye lattice 
model 2MD and 2M must be identically equal, and that  
(Cz}= 1 for all 1. If it is then supposed that  Cz may 
be well approximated by C1 for all l, equation (1) 
becomes 

ITD = N f  ~ exp [-- 2M] (exp [2M] - 1)C1, 

which is the original Warren expression. 

Diffraction theory 

We begin with the well-known result that  for a crystal 
with one atom per unit cell, the intensity in electron 
units may be written 

I = f2 ~_,~ exp [ik. (rm - r,)] 

×exp (-½({k.(Sm-Sn)}2)]. (2) 
The vector k=2(s - s0 ) /~ t  where So and s are unit 
vectors in the directions of the incident and scattered 
radiation, rm is a lattice vector, and 8,, is the instan- 
taneous displacement of the ruth atom from its 
equilibrium position due to thermal motion. The 
average indicated in the exponent is a time average. 
If we let 2 M =  ((k. 8,,) 2) equation (2) may be written 

I = f2exp  [ - 2 M ]  ~ e x p  [ik. (rm - rn ) ]  × 
m n 

(re÷n) exp (k .  8ink. [in) + Nf ~' , (3) 

where N is the total number of atoms in the crystal. 
If we subtract the Laue-Bragg scattering, 

f2 exp [ -  2M] _~ ~7 exp [ik. ( r m -  rn)],  

the remaining diffuse scattering is 

ITD= N f  2 exp [-- 2M] {exp [2M]-  1 } +_Nf2 exp [ -  2M] 

× v e x p [ i k . ( r m - r n ) ]  {exp (k.  Smk. S n ) - l } .  (4) 
n 

(n4:m) 
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To obtain (4) the double sum of (3) has been replaced 
by h r times a single sum over all sites except m, which 
is valid if the crystal is large. 

We expand the exponents in both of the braces of 
(4) to obtain the series form of ]TO given by equation 
(1). Then 

ITDZ=Nf 2 exp [-2M]((2M)Z/l!)  
× { l + Z ,  A t n e x p [ i k . ( r m - r n ) ] } ,  (5) 

nd=m 
where 

Azn={k .  Smk. Sn}z/<(k. Bm)2}Z=(Aln) z. (6) 

I t  is clear that  A zn is independent of the magnitude 
of k. :From equations (5.22) and (5.27) of James (1948) 
it may be seen that  for a cubic crystal the angular 
dependence of A zn on k is contained in the quantity 

3 2: lcoth (i ho, j I cos  o, j 
__- \~ ~ /  co~j 

Here it is assumed that  the thermal motion is a 
consequence of the superposition of 3N elastic waves 
in the lattice, t%i is the circular frequency of the 
lattice wave of phase vector @, and the sum over j 
is taken over the three independent orthogonal direc- 
tions of vibration associated with @. The Boltzmann 
constant k is not to be confused with the vector k. 
The angle between the diffraction vector and one of 
the three vibrational directions is given by a~j. 
If for a given @ it is assumed that  c%1 is independent 
of j (which is equivalent to assuming that  the velocity 
of the elastic waves is independent of j), then the 
above expression becomes independent of a~i. 

Hence, for a cubic crystal with the Debye lattice 
model A~n does not depend on the diffraction vector 
and the quantity in braces in equation (5) is simply 
the Fourier series representation of a periodic function 
uz(k) in reciprocal space whose average value is unity. 
In general, A zn is positive since we expect 8m and 8n 
to tend to have common directions. I t  is less than 
one and approaches zero as the distance between sites 
m and n become large enough for the thermal motion 
of the occupants of the sites to be uncoupled. Hence, 
u~(k) has diffuse maxima at the reciprocal lattice 
points, and from equation (6) the maxima become 
broader and less pronounced for larger 1. 

If uz(k) is averaged over a sphere in reciprocal 
space to obtain the result for a cubic powder of cell 
size a that  

ITD~ = N f  2 exp [-- 2M] ( (2M)~/1 !) Ct , 

where Cz is a function of the variable x = 2 a  sin 0/~ 
and perhaps of 2 B = 2 M  (sin 0//l) -9, then it is obvious 
tha t  the average of Cr over x must be unity. 

First order TDS with the Debye lattice model  

We comment briefly on the various treatments of first 
order TDS for close-packed cubic powder patterns, 
in the light of the above result. 

Given that  the thermal motion of the atoms in a 
crystal may be represented by the superposition of 
3N elastic waves, and the assumptions that  all waves 
have the same velocity and that  each Brillouin zone 
may be replaced by a sphere of equal volume of radius 
g~, Warren (1953) derived expressions for ul and C1 
valid in the high temperature limit that  the average 
energy E of each elastic wave is lcT. Using the more 
general result that  E=½-hv coth (hv/2/cT), Herbstein 
& Averbach (1955) obtained an expression for ul valid 
at any temperature: 

ul(g)=[cf(g)/Z + i]-lgm/(6g) coth (½zg/gm) , 

where g is a position vector in reciprocal space from 
the center of a Brillouin zone, and ~(Z) is the well- 
known Debye function of the variable •= O/T. In 
the limit as g approaches zero, ul takes on the form 
given by Warren, and its average over a Brillouin 
zone is unity, as required by equation (5). The form 
of (71 given by Herbstein & Averbach for a face- 
centered cubic element degenerates into the Warren 
expression for small 2;, and does not deviate signifi- 
cantly from it even for 2~ as large as four. Hence, 
except at very low temperatures, for most materials 
the Warren C1 is adequate. 

Second order TDS with the Debye lattice model  

We compute (72 with the Debye model for the case 
that  E=IcT. The general expression given by Olmer 
(1948) and Walker (1956) may then be written 

8 f dvg I~D2=Nf2exp[-2MJ(2M)2/2!  (v~) -1 ~" 
e=l g2(y_g)2' 

(7) 

where v~ is the volume of the reciprocal unit cell. 
The intensity is a function of the vector y extending 
from the point of measurement in reciprocal space 
to a reciprocal lattice point. The integral is carried 
out over the volume common to two Brillouin zones 

2"0 

1.5 _~_ 

q 
1.0 -- 

0.5, 

° '°  o ~ ~ ~ ~ 
x=2~ sinO/~. 

Fig. 1. The functions Cl(x ) and C2(x ). 
Except at the origin C 2 is everywhere finite. 
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whose centers are separated by a distance y. Since y 
may  be as large as 2gin, at any point in reciprocal 
space one may construct permissible vectors y to 
eight nearby reciprocal lattice points for a primitive 
lattice. The summation over Q accounts for these eight 
contributions to the second order TDS at any point. 

The integral of (7) may be evaluated to give 

f dvg 
g2(y_g)~ 

_ ~s 4 ~ [  1 y 1 ( ~n-~ ] 1 + - + .  + Y + . . .  (s) 

for 0_<y_<gm and 

l dv~ ~s 4~[( loggm/y)  9 gm 
g2(y_g)2 -- 3y ÷ y 2 + --y 

× l + ~ y  . .  . . .  

for g~ _< y _< 2g~. After appropriate averaging of (8) 
and (9) for a face-centered cubic powder, C2(x) as 
shown in Fig. 1 is obtained. The computation of this 
curve is tedious but  not difficult, and the details of 
the calculation will not be reproduced here. Also shown 
in Fig. 1 is C~(x) as given by Warren. 

D i s c u s s i o n  

Given the above result, certain discrepancies between 
theory and experiment for copper and lead as reported 
by Chipman & Paskin (1959) may be understood. 
In  both cases it was found tha t  though there was 
agreement at high scattering angles, at  small 20 there 
was apparently more diffuse scattering than could be 
accounted for by theory, and it was concluded that  the 
extra scattering was due to some real but  not under- 
stood effect. We now see that ,  because of the ab- 
normally large value of C2 used, Chipman & Paskin 
were forced to choose a small value of 2MD to fit 
experiment at large 20. Hence, in the low angle region 
where second order TDS contributions are negligible, 
their computed diffuse scattering is too small by a 

factor of approximately 2MD/2Mw, where 2Mw is the 
value obtained with the Warren theory. From their  
data, this is 68% in the case of copper. This correction 
very nearly accounts for the extra diffuse scattering. 
For lead, since 2B is very large, one may not neglect 
ITDI for 1 > 2 as is done in the Paskin theory. If we 
take 2B to be five, at the limiting sphere for copper 
radiation the average value of ITD3 is approximately 
75% of tha t  of ITD1, and there are significant contribu- 
tions from ITD4 and ITDS. 

Though the Warren expression is a good approxima- 
tion, at  large values of 2M the assumption tha t  Cz = C1 
for all 1 introduces rather more structure in the 
diffuse scattering than there should be. From Fig. 1, 
we see tha t  the actual value of C2 over the range of x 
for which it was computed is approximately halfway 
between C2=C~ and C~=I  except at the Bragg 
maxima where the diffuse scattering is not observable. 
If we take Ca = ½(1 + C1), and Cz = 1 for 1 > 2, we obtain 

ITD = N f  ~ (1 --  e x p  [ --  2 M ] )  

+ Nf  2 exp [ - 2M] (C1 - 1 ) (2M + M 2) . (]0) 

The above result should be accurate for any 2M, 
and may be very easily fitted to experimental measure- 
ments. 

I t  is a pleasure to acknowledge tha t  discussions with 
Dr C. J.  Sparks helped stimulate this work. Comments 
by Prof. B. E. Warren were very helpful. 
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